Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Otolaryngol Head Neck Surg ; 164(2): 285-293, 2021 02.
Article in English | MEDLINE | ID: covidwho-1140419

ABSTRACT

OBJECTIVE: To define the aerosol and droplet risks associated with endonasal drilling and to identify mitigation strategies. STUDY DESIGN: Simulation series with fluorescent 3-dimensional (3D) printed sinonasal models and deidentified cadaveric heads. SETTINGS: Dedicated surgical laboratory. SUBJECTS AND METHODS: Cadaveric specimens irrigated with fluorescent tracer and fluorescent 3D-printed models were drilled. A cascade impactor was used to collect aerosols and small droplets of various aerodynamic diameters under 15 µm. Large droplet generation was measured by evaluating the field for fluorescent debris. Aerosol plumes through the nares were generated via nebulizer, and mitigation measures, including suction and SPIWay devices, nasal sheaths, were evaluated regarding reduction of aerosol escape from the nose. RESULTS: The drilling of cadaveric specimens without flexible suction generated aerosols ≤3.30 µm, and drilling of 3D sinonasal models consistently produced aerosols ≤14.1 µm. Mitigation with SPIWay or diameter-restricted SPIWay produced same results. There was minimal field contamination in the cadaveric models, 0% to 2.77% field tarp area, regardless of drill burr type or drilling location; cutting burr drilling without suction in the 3D model yielded the worst contamination field (36.1%), followed by coarse diamond drilling without suction (19.4%). The simple placement of a flexible suction instrument in the nasal cavity or nasopharynx led to complete elimination of all aerosols ≤14.1 µm, as evaluated by a cascade impactor positioned immediately at the nares. CONCLUSION: Given the findings regarding aerosol risk reduction, we strongly recommend that physicians use a suction instrument in the nasal cavity or nasopharynx during endonasal surgery in the COVID-19 era.


Subject(s)
Aerosols , COVID-19/prevention & control , COVID-19/transmission , Infectious Disease Transmission, Patient-to-Professional/prevention & control , Nasal Surgical Procedures/adverse effects , Natural Orifice Endoscopic Surgery/adverse effects , Cadaver , Humans , Hydrodynamics , Intubation, Intratracheal , Models, Biological , Personal Protective Equipment , Printing, Three-Dimensional , Risk Assessment
2.
Otolaryngol Head Neck Surg ; 164(2): 433-442, 2021 02.
Article in English | MEDLINE | ID: covidwho-707086

ABSTRACT

OBJECTIVE: After significant restrictions initially due to the COVID-19 pandemic, otolaryngologists have begun resuming normal clinical practice. However, the risk of SARS-CoV-2 transmission to health care workers through aerosolization and airborne transmission during rhinologic surgery remains incompletely characterized. The objective of this study was to quantify the number concentrations of aerosols generated during rhinologic surgery with and without interventions involving 3 passive suction devices. STUDY DESIGN: Cadaver simulation. SETTING: Dedicated surgical laboratory. SUBJECTS AND METHODS: In a simulation of rhinologic procedures with and without different passive suction interventions, the concentrations of generated aerosols in the particle size range of 0.30 to 10.0 µm were quantified with an optical particle sizer. RESULTS: Functional endoscopic sinus surgery with and without microdebrider, high-speed powered drilling, use of an ultrasonic aspirator, and electrocautery all produced statistically significant increases in concentrations of aerosols of various sizes (P < .05). Powered drilling, ultrasonic aspirator, and electrocautery generated the highest concentration of aerosols, predominantly submicroparticles <1 µm. All interventions with a suction device were effective in reducing aerosols, though the surgical smoke evacuation system was the most effective passive suction method in 2 of the 5 surgical conditions with statistical significance (P < .05). CONCLUSION: Significant aerosol concentrations were produced in the range of 0.30 to 10.0 µm during all rhinologic procedures in this cadaver simulation. Rhinologic surgery with a passive suction device results in significant mitigation of generated aerosols.


Subject(s)
Aerosols , COVID-19/transmission , Nasal Surgical Procedures/adverse effects , COVID-19/prevention & control , Cadaver , Humans , Models, Biological
SELECTION OF CITATIONS
SEARCH DETAIL